

Year 13 Biology Curriculum Unit Overview

Curriculum Catch up Statement

During school closure, students continued to follow the Year 12 Scheme of Learning covering the following topics: Biodiversity, Classification and Evolution. We have identified the key knowledge and concepts within the topics covered during school closure and we have mapped when we will revisit them. There will be a catch-up period for the first two weeks of term when we will revisit key concepts and knowledge. Following this, we will carry on with our planned curriculum and address any misconceptions and missing knowledge of concepts as the student progresses through the topics. Prior knowledge is always assessed before a topic is started so the teacher can plan accordingly. Students will be assessed during class using questioning, quick quizzes, group activities and low states testing. They will be provided with knowledge organisers that clearly sets out a checklist of concepts required for that topic. End of topic tests will give a clear indication of knowledge that still needs to be embedded and then targeted tasks will be issued to students as and when required. Homework and practice exam questions will occasionally be based on the 'lockdown' topics so that teachers can gain a greater understanding of students retained knowledge. Homework may also be based on current topics, so that additional judgements can be made on student's progress. Fortunately, we have gained teaching hours this year for A level which will benefit the catch-up requirements. Planned revision time at the end of the course will still go ahead before the exams.

Areas covered in the catch-up work are indicated below in red in the curriculum summary grids.

Year 13 A Level Biology A Module 5: Communication, homeostasis and energy						
What are we learning?	What knowledge, understanding and skills will we gain?¹	What does mastery look like? ²	How does this build on prior learning? ³	What additional resources are available?		
	Knowledge - cell signalling; homeostatic principles;		Picks up themes from	OCR Year 1 textbook		
	endotherms and ectotherms; structure and function		KS3 work			
	of mammalian liver; water potential control; kidney	, , , , ,	, ,	OCR Year 2 textbook		
Excretion	failure and treatment; excretory products in		and photosynthesis as well			
	diagnostic testing; structures and functions of		as food and digestion (Year	1		
	mammalian neuronal system; generation and	J .	7, 8 and 9)	guide		
	maintenance of nerve impulses; synapses;	and safety of self and peers	L			
	mammalian glands; diabetes and treatment; plant		Develops work from GCSE			
Hormonal	response types; auxins and other plant hormones;	hazards and risks associated	37	skills handbook		
	structure and function of human brain; coordination		units in infection and			
	of human endocrine and nervous system; muscle		1 '	OCR Mathematical skills		
	contraction in humans; neuromuscular junctions;	alone or as part of a student	•	guide		
	chloroplast structure and function; photosynthetic	•	and 11)			
	pigments; light dependent stage; fixation of carbon	consistently produce				
Photosynthesis	dioxide and the light independent stage; rate	accurate results				

Respiration

of photosynthesis; structure and function of mitochondria; glycolysis, link reaction; Kreb's cycle; oxidative phosphorylation; chemiosmosis; anaerobic respiration; respiratory quotient and substrates **Understanding** - why homeostasis is necessary; applying temperature control mechanism strategies to different organisms; why excretion is important; comparison of different dialysis methods and transplantation; pregnancy testing and anabolic steroid analysis by GC-MS; comparison of myelinated and non-myelinated neurones. neurotransmitter function; pancreas function and adrenal glands; comparison of type I and II diabetes; how apical dominance is controlled; seed germination and stem elongation; commercial use of plant hormones; how heart rate is controlled; how photosynthesis and respiration are inter-related; the importance of photosynthesis bioenergetically; uses of triose phosphate; factors affecting photosynthesis; the importance of cellular respiration; factors affecting the rate of respiration; the significance of different respiratory substrates; **Skills** - microscopic examination and drawing of histology of liver; microscopic examination and drawing of histology of kidney; pregnancy testing; microscopic examination and drawing of histology of pancreatic tissue; investigations into phototropism and geotropism; the examination of stained sections or photomicrographs of skeletal muscle; TLC of photosynthetic pigments; practical investigations using respirometers; data-logger use

critically reflect on and evaluate results produced, and outline the steps needed to improve in future tasks

Picks up th GCSE Che on chemical 10 and 11)

Picks up themes from GCSE Chemistry on chemical analysis (Year 10 and 11)

Further develops the practical skills acquired in GCSE Science / Biology from both the general practical activities and specifically from the Required Practicals (Year 10 and 11)

The work carried out in Year 1 of the A level Biology course is incorporated into the learning and understanding of this module throughout. There is an expectation that Year 1 knowledge and understanding is used synoptically in Year 2 (the Unified Paper 3 specifically examines the link between Year 1 and 2 topics and themes)

What are we learning?	What knowledge, understanding and skills will we gain?	What does mastery look like? ²	How does this build on prior learning? ³	What additional resources are available?
Cellular control	Knowledge gene mutations; regulation of gene	Students will be able to: work entirely independently	Picks up themes from KS3 work on organisms, as	OCR Year 1 textbook
Patterns of	expression; control of body plan;	when carrying out practical	well as evolution and	OCR Year 2 textbook
inheritance	apoptosis and control of mitosis;	work	ecology. Some students will	
-	environmental and genetic factors	work with a high level of		OCR practical skills guide
Manipulating	contributing to phenotypic variation;	safely, ensuring the health and	work (Year 7, 8 and 9)	
genomes	patterns of inheritance; allele	safety of self and peers by		OCR Biology drawing
	frequencies in populations; speciation;	carefully considering the	Develops work from GCSE	skills handbook
Cloning and	artificial selection; DNA sequencing;	hazards and risks associated	Biology from	
biotechnology	DNA profiling and uses; polymerase	with the task	units in infection and	OCR Mathematical skills
	chain reaction and applications;	design robust investigations		guide
Ecosystems	genetic engineering; gene therapy;	alone or as part of a student	ecology (Year 10 and 11)	
	plant cloning; animal cloning;	team without teacher input		
Populations and	microorganisms in biotechnological			
sustainability	processes; growth curves; culturing	results	GCSE Chemistry on organic	
	microbes; immobilised	critically reflect on and	chemistry (Year 10 and 11)	
	enzymes; ecosystem types; biomass	evaluate results produced,	L	
	transfer; recycling; succession;	and outline	Further develops the	
	sampling for abundance and	the steps needed to improve	practical skills acquired in	
	distribution; population size;	in future tasks	GCSE Science	
	interactions between	carry out statistical tests in	/ Biology from both the	
	populations; conservation and	relation to data from sampling	general practical activities	
	preservation; sustainability	or genetics data and interpret	and specifically from the	
	Understanding	results justifiably	Required Practicals (Year	
	how mutation is linked to changes in		10 and 11)	
	protein production; how homeobox		Como otudonte telifore	
	sequences determine body plan;		Some students taking	
	examples of <i>lac</i> operon, post-		Statistics at GCSE will be familiar with basic	
	transcriptional and post-translational			
	control of expression; explaining monohybrid, dihybrid, multiple alleles,		statistical tests, but this unit builds on that knowledge	
	sex-linkage and codominance;		Dulius Off that Knowledge	
	epistasis; the ethical considerations			

around the use of artificial selection; how gene sequencing has led to prediction of protein structure and artificial biology; the ethical considerations around the use of genetic engineering; plant cloning techniques (micro propagation, cuttings, tissue culture; animal cloning techniques (embryo twinning, enucleation, somatic cell transfer); micros used in medicine and food production; the dynamic nature of ecosystems; the nitrogen cycle and carbon cycle; limiting factors in a population; social, economic and ethical reasons for conservation of resources; management of environment with reference to case studies from around the world Skills

1 of the A level Biology course is incorporated into the learning and understanding of this module throughout. There is an expectation that Year 1 knowledge and understanding is used synoptically in Year 2 (the Unified Paper 3 specifically examines the link between Year 1 and 2 topics and themes)

The work carried out in Year

drawing genetic diagrams to show inheritance; use of x2 tests to determine significance in genetic outcomes; applying calculations of Hardy-Weinberg to allele frequencies in populations; the use of gel electrophoresis in separating nucleic acid fragments; working with microorganisms using serial dilution methods and aseptic technique; use of field sampling techniques to measure abundance and distribution of organisms