

Computer Science Unit Overview Year 12

Rationale for splitting the specification between two teachers

The course very naturally falls into two parts being tested through a more practical Paper 1 and more theory-based paper 2. Although there are activities to

supplement and support both parts of the course (especially where there is overlap anyway) the split enable one teacher to really focus and develop the

students’ programming skills whilst the other focuses on developing written techniques.

Teacher 1 (Sections 1-4, more practical, paper 1)

Teacher2 (Section 5-9, more theory, paper 2)

2.3 – numbers/sections refer to specification

(https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF)

Extension links

Programming tutorials - https://www.w3schools.com/

Computerphile - https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA

Since we accept students who have not studied GCSE Computer Science, no specific catch up is needed. However, we understand that programming skills

may be less practised than usual: additional teaching time is to be used primarily to focus on developing these skills.

https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://www.w3schools.com/
https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA

Computer Science – Year 12 Autumn 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?

Teacher 1
3.1
Fundamentals
of
programming

Knowledge: Data types (integer,
real/float, Boolean, character, string,
date/time, records, arrays). Programming
concepts (variable declaration, constant
declaration, assignment, iteration,
selection, subroutine (inc. parameters,
returning values and global/local
variables)). Arithmetic operations (inc
integer division, exponentiation, rounding,
truncation). Relational operations (equal
to, not equal to, less than, greater than,
less than or equal to, greater than or
equal to). Boolean operations (NOT,
AND, OR, XOR). String-handling
operations. Random number generation.
Structured programming

Understanding: Students will understand
how the above items can be used
together to create programs that solve
problems. They will understand how to
develop subroutines that pass
parameters and return values .
Understand the structured approach to
program design and construction and be
able to construct and use hierarchy charts
when designing programs.

Skills: Developing and formatting
readable code

When given a problem
students should able to make
decisions about what
programming aspects,
combined, will be able to
created and effective solution
to a problem

In particular students should:
Be able to explain choices for
coding decisions
Read pre-written code and
spot errors

This unit builds on KS4
learning of programming.

It reinforces the learning
from KS4 and ensures
the students can apply
programming elements to
the language they will use
at A-Level

Textbook p2-34

Resources – outline
PowerP
oints with suggested
examples and
scaffolding activities

Practice questions (from
past exams) and section
assessments

Practice skeleton
program (as part of
assessment) – Number
Guess

Many Python files
available to demonstrate
and practise the
concepts here.

Teacher 2
3.5 Data
representations

Knowledge: Number systems N, Z, Q, R.
Bases 2, 10, 16. Units to tebi. Two’s
complement binary. ASCII and Unicode.
Parity bits, majority voting, check digits.
Bitmaps. Analogue/digital conversion of
sound. MIDI. Run-length encoding and
dictionary-based methods. Caesar and
Vernam ciphers.

Understanding: Why hexadecimal is used
as a shorthand for binary. How the same
byte could represent many different
things. Why unicode was introduced. How
an ADC works. The difference between
lossless and lossy compression and the
advantages of each.

Skills: Covert between different number
bases. Calculation involving binary
(without converting to decimal)

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section
Be able to give examples and
perform required conversions
and calculations quickly
Be able to describe
processes in sufficient detail
to answer longer written
exam questions
Begin to apply their
knowledge to a range of
contexts (eg in programming,
and harder exam questions)

Much of this builds
directly on work covered
in GCSE Computing,
however note that not all
students will have done
GCSE Computing.

Students tend to know the
gist of topics from GCSE
(eg Run-length encoding)
but usually struggling to
answer questions in the
required depth without
clear modelling. Using the
practice exam questions
throughout helps students
to see the standard
required.

Textbook p182-228

Resources – outline
Powerpoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Practical tasks:
Converting bases
Error checking
Skeleton – Secret
Messages

Computer Science - Year 12 Autumn 2

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?

Teacher 1
3.2 Data structures

Knowledge: Be familiar with the
concept of data structures and
arrays (single and multi-
dimensional). How to read/write
from a text file and a binary (non-
text) file.

Understanding: How a 2D array can
be used to represent a table, matrix
or grid.

Skills:
Developing and formatting readable
code, including the use of arrays.
Continuing to build programming
skills through practical experiences,
including the use of a previous
skeleton program.

When given a problem
students should able to make
decisions about what
programming aspects,
combined, will be able to
created and effective solution
to a problem

In particular students should:
Be able to explain choices for
coding decisions
Read pre-written code and
spot errors
Be able to confidently use and
manipulate arrays (single and
multi-dimensional) when
programming

This unit builds on KS4
learning of programming,
and most students will be
familiar with the concept
of a 1D array at least.

It reinforces the learning
from KS4 and ensures the
students can apply
programming elements to
the language they will use
at A-Level

Textbook p50-55 (AS
parts only)

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Skelton program –
Battleships (as part of
assessment)

Many Python files
available to demonstrate
and practise the
concepts here.

Teacher 2
3.6 Computer
systems

Knowledge: Classification of
hardware and software. Role of an
OS. Classification of high- and low-
level languages. Compilers and
interpreters. Bytecode. Logic gates.
Basics of Boolean algebra.

Understanding: the need for, and
attributes of, different types of
software (OS, utility, library,
translator). Advantages and
disadvantages of high-and low-level
languages. Explain the differences
between compilers and interpreters
and situations in which each is
appropriate.

Skills: Complete a truth table for a
given logic circuit. Write a Boolean
expression for a given logic gate
(and vice versa). Use Boolean
identities and De Morgan’s laws to
manipulate and simplify Boolean
expressions.

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section and
give examples of each where
appropriate.
Be able to compare ideas (eg
high and low level, or
compilers and interpreters) in
depth, giving advantages and
disadvantages of each
Confidently use logic gate
circuits and Boolean
expressions and truth tables
Show logical steps to simplify
an expression using Boolean
algebra
Become more confident in
applying their knowledge to a
range of contexts (eg in
programming, and harder
exam questions)

Again, much of this builds
directly on work covered
in GCSE Computing,
however note that not all
students will have done
GCSE Computing.

Logic operators are used
practically in Autumn1
(Teacher1).

Students tend to know the
gist of topics from GCSE
(eg classification of
software) but usually
struggle to answer
questions in the required
depth without clear
modelling. Using the
practice exam questions
throughout helps students
to see the standard
required.

Textbook p230-264

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Practical tasks:
Bitwise operators

Computer Science - Year 12 Spring 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?

Teacher 1
3.3 Systematic
approach to
problem solving

Knowledge: The five stages of
software development: Analysis,
Design, Implementation, Testing,
Evaluation (ADITE)

Understanding: The concepts of
normal, erroneous and boundary
data for testing.

Skills: Continued development of
programming skills, including the
use of a new skeleton program

(note that although this section can
be tested explicitly in AS exams, it is
examined through the NEA project
for the full A level)

Students should be able to
identify the stages of
development (ADITE) in a
given scenario.

Students should be able to
identify, and give examples
of, normal, erroneous and
boundary data for testing.

When given a problem
students should able to make
decisions about what
programming aspects,
combined, will be able to
created and effective solution
to a problem

In particular students should:
Be able to explain choices for
coding decisions
Read pre-written code and
spot errors
Be able to confidently use and
manipulate arrays (single and
multi-dimensional) when
programming

This unit builds on KS4
learning of programming
and the previous terms’s
work on programming –
adding new contexts for
students to develop and
extend their skills.

Textbook p408-416

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Skelton program – Plant
Growing Simulation (as
part of assessment)

Teacher 2
3.7 Computer
organisation and
architecture

Knowledge: Basic internal
components of a computer system
(processor, main memory, buses).
Harvard and von Neumann
architectures. The stored program
concept. The Fetch-Execute cycle
and the role of registers within it.
The processor instruction set.
Immediate and direct addressing.
Factors affecting processor
performance. Assembly code
operations. External hardware
devices (barcode reader, digital
camera, laser printer, RFID).
Secondary storage devices (hard
disk, optical disk, soli-state drive)
Understanding: How the different
bus widths affect system
performance. The use of buses
within the Fetch-Execute cycle.
Compare and contrast the different
external hardware for use in a given
context.
Skills: Be able to understand and
write simple programs using the
standard AQA assembly language.

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section and
give examples of each where
appropriate.
Be able to compare ideas (eg
Harvard and von Neumann
architectures) in depth, giving
advantages and
disadvantages of each
Confidently use the standard
AQA assembly language
Become more confident in
applying their knowledge to a
range of contexts (eg in
programming, and harder
exam questions)

Again, much of this builds
directly on work covered
in GCSE Computing,
however note that not all
students will have done
GCSE Computing.

Students tend to know the
gist of topics from GCSE
(eg classification of
software) but usually
struggle to answer
questions in the required
depth without clear
modelling. Using the
practice exam questions
throughout helps students
to see the standard
required.

Textbook p266-299

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Computer Science - Year 12 Spring 2

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?

Teacher 1
3.4 Theory of
computation

Knowledge: Definitions of: algorithm,
abstraction (representational, by
generalisation or categorisation,
procedural, functional), information
hiding, data abstractions, problem
abstraction/reduction,
decomposition, composition,
automation

Understanding: Develop

Skills: Develop and check solutions
to simple logic problems

Students will appreciate that
computer science is about
building clean abstract
models (abstractions) of
messy, noisy, real world
objects or phenomena.
Computer scientists have to
choose what to include in
models and what to discard,
to determine the
minimum amount of detail
necessary to model
in order to solve a given
problem to the required
degree of accuracy.

Students will appreciate that
computer science deals with
putting the models
into action to solve problems.
This involves
creating algorithms for
performing actions on,
and with, the data that has
been modelled.
When given a problem
students should able to make
decisions about what
programming aspects,
combined, will be able to
created and effective solution
to a problem

This unit builds on KS4
learning of programming
and the previous terms’s
work on programming –
adding new contexts for
students to develop and
extend their skills.

Textbook p134-149 (AS
sections only)

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Skelton program –
Morse Code (as part of
assessment)

Teacher 2
3.8 Consequences
of computing

Knowledge: Awareness of current
individual (moral), social (ethical),
legal and cultural opportunities and
risks of computing. Awareness of
some relevant laws (although
specifics not required) such as the
Data Protection Act and the
Copyright, Designs and Patents Act.

Understanding: Be able to
categorise issues into the
(sometimes overlapping) areas of
individual, social, legal and cultural.

Skills: Being able to analyse a given
situation and apply typical issues
(job creation/destructions, privacy,
copyright, fault, access) to the
specific situation being discussed. A
standard approach is to ‘brainstorm’
the issues and then practice turning
that into a longer written response.

In particular students should:
Understand the (sometimes
overlapping) scope of the
headings: individual, social,
legal, cultural.
Be aware of current UK laws
as pertaining to computing
and the use of technology
Show knowledge of current
issues through wider reading
Be able to write coherently on
a given situation, highlighting
both positives (opportunities)
and negatives (risks)

Students have the
opportunity to bring their
own general knowledge
and interests to this part
of the course through
situations that are
discussed.

Questions often involve
longer written answers
(around 10 marks) so
writing skills (eg from
English or History -
especially considering all
‘sides’ of a situation) can
be used and developed
here.

Textbook p300-309

Recent news stories
involving the
development and use of
technology (eg smart
cities; use of AI/AR/VR
in fields such as
recruitment and
medicine)

Resources – outline
PowerPoints with
suggested examples
and scaffolding
activities.

Practice questions (from
past exams) and section
assessments

Black Mirror (tv series)

Computer Science - Year 12 Summer 1

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional
resources

are available?

Teacher 1
Skeleton program
preparation for
mock (2019 Board
Game)

Knowledge: consolidation and
development of all knowledge from
‘Teacher1’ sections above
Understanding: consolidation and
development of all understanding
from ‘Teacher 1’ sections above
Skills: consolidation and
development of all skills from
‘Teacher 1’ sections above

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used and give
examples of each where
appropriate.
Be able to write short
programs in Python from a
given description, algorithm,
flow chart or similar
Be very familiar with the
skeleton program – be able to
identify the purpose of each
subroutine and line within
Be able to make adjustments
to the skeleton program to
include error correction or
enhanced functionality

Students will have worked
on skeleton programs for
previous assessments.

Practice questions (from
past exams) for section
A

Programming
Challenges for end of
Section A (available on
Notebook)

Practice theory
questions on the
skeleton program for
Section B – PowerPoint
with suggestions and
examples

Practice practical
changes to the skeleton
program for Section C
(can also see AQA
wikibooks page)

Teacher 2
3.9 Communication
and Networking

Knowledge: Serial and parallel
transmission. Synchronous and
asynchronous transmission.
Definitions of: baud rate, bit rate,
bandwidth, latency, protocol.
Physical star, logical bus topology.
Peer-to-peer and client-server
networking. Wireless networking
concepts: WiFi, NIC, WAP, security
issues, CSMA/CA, RTS/CTS, SSID
Understanding: Difference between
bit rate and baud rate, and the
relationship to bandwidth. How a
topologys physical layout can be
different to it’s logical functionality.
Skills: Calculate bit rate from baud
rate and bits per signal. Draw and
identify bus and star networks.

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section and
give examples of each where
appropriate.
Be able to compare ideas (eg
synchronous and
asynchronous transmission)
in depth, giving advantages
and disadvantages of each
Become more confident in
applying their knowledge to a
range of contexts (eg in
programming, and harder
exam questions)

Some of this builds
directly on work covered
in GCSE Computing,
however note that not all
students will have done
GCSE Computing.

Students tend to know the
gist of topics from GCSE
(eg bus topology) but
usually struggle to answer
questions in the required
depth without clear
modelling. Using the
practice exam questions
throughout helps students
to see the standard
required.

Textbook p310-325

Resources – outline
PowerPoints with
suggested examples
and scaffolding activities

Practice questions (from
past exams) and section
assessments

Computer Science - Year 12 Summer 2

What are we
learning?

What knowledge, understanding
and skills will we gain?1

What does mastery look
like?2

How does this build on
prior learning?3

What additional resources
are available?

Teacher 1
4.10 Databases
and SQL

Knowledge: Relational databases
and entity-relationship (ER)
diagrams. Definitions of: entity,
attribute, primary key, composite
primary key, foreign key,
normalisation. Use of SQL to
retrieve, update, insert and delete
data. Use of SQL to define a
database table. Know how
concurrent access to a database
can be controlled to preserve the
integrity of the database.
Understanding: Why databases are
normalised. Why concurrent
access can cause issues and how
to they can be prevented/resolved.
Skills: Produce a data model from
given data requirements for a
simple scenario involving multiple
entities. Be able to identify why
given relations are not normalised,
and be able to normalise given
relations to third normal form

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section
and give examples of each
where appropriate.
Be able to compare ideas (eg
methods to control
concurrent access) in depth,
giving advantages and
disadvantages of each
Confidently draw ER
diagrams showing the
relationships between
entities
Be able to interpret and write
commands in SQL
Become more confident in
applying their knowledge to a
range of contexts (eg in
programming, and harder
exam questions)

Students may have an
awareness of databases
from GCSE Computing
(or similar) and may
even have used Access.
However most of the
terminology required
here will be new to
students, and most will
not have used SQL.

Textbook p364-393

Resources – outline
PowerPoints with suggested
examples and scaffolding
activities

Practice questions (from
past exams) and section
assessments

For practising SQL:
https://www.w3schools.com/

Python files:
- Using sqlite
- Using sqlite advanced

https://www.w3schools.com/

Teacher 2
4.1 Fundementals
of Programming
NEA - Introduction

Knowledge: Be familiar with the
key concepts: class, object,
instantiation, encapsulation,
inheritance, aggregation,
composition, polymorphism,
overriding. Use of ‘ADITE’ for a
project.
Understanding: The object-oriented
paradigm and why it is used. Be
aware of the principles:
encapsulate what varies, favour
composition over inheritance,
program to interfaces, not
implementation.
Skills: Experience of programming
in object-oriented programming
paradigm involving: abstract, virtual
and static methods, inheritance,
aggregation, polymorphism,
public/private/protected specifiers.
Be able to draw and interpret class
diagrams.

In particular students should:
Through regular revisiting, be
able to quickly recall all key
terms used in this section
and give examples of each
where appropriate.
Confidently program using
classes
Confidently draw class
diagrams showing the
relationships between
classes
Understand
private/public/protected
despite Python not explicitly
using them
Become more confident in
applying their knowledge to a
range of contexts (eg in
programming, and harder
exam questions)

Most students will not be
familiar with classes
(unless they have
experience programming
in Java or similar).
However this builds on
the concepts of a
structured programming
as covered in Y12
Autumn 1 (Teacher 1).

Textbook p25-49

Resources – outline
PowerPoints with suggested
examples and scaffolding
activities

Practice questions (from
past exams) and section
assessments

Many Python files available
for introducing the various
concepts and giving
examples (eg of
composition vs inheritance)

